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Stochastic versus Chaotic Dynamics in a 
Deterministic System 
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We analyze a dynamical system whose time evolution depends on an externally 
controlled model parameter. We observe that the introduction of state- 
dependent perturbations induces a variety of phenomena which can have either 
a chaotic or stochastic nature. We analyze the sensitivity of the dynamics and 
the underlying attractors to the strength, frequency, and time correlations of the 
external perturbations. 

KEY WORDS:  Chaos; noise-induced transitions; state-dependent pertur- 
bations. 

1. INTRODUCTION 

Many stochastic models evolving in discrete time have the structure 

Z~+l=f(zk, sk)+~ k, k = 0 ,  1,2 .... (1.1) 

The process variable zk +1 at time tk+l is assumed to be influenced by two 
types of forces--the first contribution depends on the current state variable 
z~ and other systematically or randomly varying external parameters sk, 
the effect of which can be temporally correlated, while the second con- 
tribution is commonly taken to be a noise perturbation Ck viewed as an 
average over the fast variables. 

Relevant examples are to be found in genetic modeling, (1'2) where the 
process variable zk+l represents the number of some particular species 
present in the model system at the begining of generation k +  1. In 
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ecological models, the {sk} are sometimes referred to as stochastic (or 
deterministic) environmental effects, while the {~k} are regarded as 
sampling or demographic effects. (3) 

One of the most popular genetic models (2'3) is the mapping 

z~ + 1 = c~zk(1 - zk) (1.2) 

which describes, for example, the spreading of an arbitrarily chosen gene in 
a haploid population over a sequence of generations under the influence of 
a systematic "selection pressure" of strength c~ acting on the system. 
Equation (1.2) defines the logistic map whose welt-known properties (4) 
depend on the value of the single external parameter c~. 

A population structure can also be affected by mutations, which is 
reflected in the possibility of the "type" of an individual being altered as it 
is replaced over the course of time. Specifically, formulation of a model 
system in terms of a Markov chain (3) leads to the following structure for 
the transition probability that there will be m genes of type A, say, obser- 
ved in generation k + 1, given that there were n genes of type A present ifi 
the kth generation: 

Pmn=(-N~ pm(1--pn) N - m  (1.3) 
\ m /  

where 

(1 + c~/2)Ex(1 - 4`) + (1 - x )~ l  

P" - (1 + c(2)Ex(1 - 4') + (1 - x)q~] + (1 - c~/2)Eq, x + (1 - x)(1 - q~)3 
(1.4) 

Here, ~b and ~ express the respective probabilities per generation of an A 
type mutating to an A type and a n / t  type mutating to an A type. The fact 
that one allele is better adapted to the environment than the other is 
reflected by the selection coefficient e. The total population of N genes 
remains constant in time, while the fraction of genes of type A present in 
the kth generation is denoted by x = n / N ,  x e  [0, 1]. 

The continuous version of this model Markov chain converges to a 
diffusion process (3~ whose stationary probability distribution ps(x,  oo) 
reveals features characteristic of noise-induced transitions. (5) 

In the present paper, we adopt a picture of evolution in which the 
time scales of the mutation and selection processes are well separated. By 
assuming a symmetric model, 4`=~b= 1/2, we arrive at the following 
difference equation describing the fluctuation in the fraction of A-type 
genes from one generation to the next (3'5) 

1 c~,x(t)[1 - x( t ) ]  (1.5) 
Ax( t )  = ~ - x ( t )  -~ 1 -- c~,/2 + e , x ( t )  
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where ~, is the selection coefficient per generation. For c~t~ 1, Eq. (1.5) 
reduces to 

dx/dt = 1/2 - x(t) + 7,x( t ) [  1 - x( t ) ]  (1.6) 

If the environment exhibits a certain random variability, a, will fluctuate 
from generation to generation. Such a perturbation can then be closely 
related to the kinetics of x = n/N given by the stroboscopic map, 

dx/dt= 1 / 2 - x +  g(x) ~ (3(t-kd)a~ (1.7) 
k = O  

g(x) = x(1 - x) (1.8) 

where the sequence of "perturbation terms" of strength c~k represents the 
environmental effects leading to an incident variation of c~, (6) and 
approximates natural noise: 

~,=~o + ~ ~k 3 ( t -kA)  (1.9) 
k 

~ o = 0  (1.10) 

A discretized version of Eq. (1.7) can be represented by 

1 1 2 --2z Xk+l=l+e--*(Xk--1)+O~k+l{~--(Xg--~) e } (1.11) 

where z = t ~ - t k  1, x~ = x(tk + 0), and the interpretation of 6(0 follows 
Ito's rule. (6'23/ The parameter c~ enters into Eq. (1.11) as an independent 
variable whose time variations are governed by some dynamics, 

and we assume 

c&t = A(c~,) dt + dS~(t) (1.12) 

Lt/~l 
Sz(t)"~'T21/2 2 r/k ( 1 . 1 3 )  

k = O  

A(: 0 is a deterministic force exerted on c~ (it therefore stands for the 
systematic changes of c~, in the course of evolution) and dS~(t) reflects the 
presence of random external noise {r/k }. 

In this approach, the time variations of c~ can be understood as the 
motion of a Brownian particle whose dynamics is perturbed by a random 
force dS~(t)/dt. The similarity of Eqs. (1.12) and (1.13) to a Langevin 
equation is not purely coincidental. In fact, the solution of Eq. (1.11) can 
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be presented <7) as ~( t )=  g ( t - n r ,  en), where n = Lt/rJ, and en is obtained 
by the recursion 

Yn+~ =Tyn  (1.14) 

(~n+l = g(v, ~,)  + "C1/2j'(yn+ 1) (1.15)  

f ( T " ( y ) ) = q , ( y )  (1.16) 

T is assumed to be a measure-preserving mapping fulfilling the so-called 
condition of ~b-mixing, (7'8) which expresses the asymptotic independence of 
events. For  a real-valued function f satisfying 

E [ f ] - 0  (1.17) 

V a r [ f ]  < oe (1.18) 

with respect to the invariant measure # of t h e  map T, the sum (1.13) 
converges to a normalized Wiener process ~7 9) 

S ~ ( t ) ~ a W ( t ) ,  ~ ~ 0  (1.19) 

An illustrative example is the particular choice of T studied by Beck 
and Roepstorff(7): 

Y,+I = 2y] - 1 (1.20) 

O~n_t_ 1 =•O:.q-Yn+l, y 6  [ - 1 ,  1] (1.21) 

In the limit 2 = e - ~  --, 1, the system (1.20)-(1.21) is dynamically equivalent 
to a Langevin equation: 

d~(t) = - 7~(t) dt + dS, ( t )  (1.22) 

St( t )  = ~rW(t), tr: = 1/2 (1.23) 

i.e., the dynamics of e, in the limit z--, 0, are described by an Ornstein- 
Uhlenbeck (OU) process with correlation time r .... = 1/7. 

It should be stressed, however, that there exists a broader class of 
dynamic mappings T which will fulfill the convergence (1.19) under the 
conditions mentioned earlier. The logistic map serves here as a particular 
example of special simplicity with the properties necessary for the assertion 
of the theorem (1.19). 

In this context, our program is to investigate the long-time predictions 
of the model system (1.11) in the presence of external perturnations 
superimposed on the parameter e. 

Particular attention is focused on the class of phenomena induced by 
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the presence of regular perturbations (1.20)-(1.21) which converge in the 
limit 2 --* 1 to a stationary diffusion-like stochastic process. 

In Section 2, we discuss the properties of the model system in its con- 
tinuous version. The deterministic analysis of the discretized equations 
(1.11), (1.20), and (1.21) is presented in Section 3. Studies on the stochastic 
nature of the external perturbations (1.20) and (1.21) are briefly reported in 
Section 3.1, whereas their effects on the evolution of the system are 
examined in Section 3.2. That  section is also devoted to an analysis of some 
features of chaos revealed by the model dynamics. A summary of our 
results and a discussion are offered in Section 4. 

2. CONTINUOUS VERSION OF THE MODEL DYNAMICS:  
LONG-TIME PREDICTIONS 

In this section, we present an overview of our basic model (1.6), which 
can be used to describe the mechanism of genetic selection in population 
dynamics. Similar equations are also known to model oxidation of 
hemoglobin, (1~ relaxation kinetics of the denaturization of DNA, (H) and 
chemical isomerization on surfaces. (12) The common characteristic of these 
phenomena is kinetics given by a second-order polynomial in a state 
variable parametrized by constants describing couplings to the environ- 
ment. 

Let us assume that in a phenomenological equation of the form (1.6) 
the time variability of et can be modeled by a stationary random process. If 
c~, can be viewed as the cumulative effect of a large number of small 
additive contributions, then by invoking the central limit theorem one can 
assume that ~, is Gaussian. The particular choice of the stationary 
Gaussian diffusion process 

d ~  t = - 7 ~ t  d t  + o~? 1/2 d W  t (2.1) 

leads in the limit 7 ~ oo (~ . . . .  = 1/7 ~ 0) to a "noise-induced transition ''(s) 
at a point 

O'cr= 4(1 -- l/]J) (2.2) 

Only if r .. . .  = 0 does the collective effect of c~, describe a white noise 
process whose imposition on x, transforms it into a stochastic diffusion 
(i.e., continuous-time Markov process). A nonvanishing r .. . .  leads to non- 
Markovian dynamics of x,, given [-see (1.6)] by the equation 

dxt=(�89 dt+E[~t]x~(1-xt)dt+~,~l/2x,(1-x~)dt (2.3) 

Critical behavior of this model is observable as a qualitative change in the 



544 G u d o w s k a - N o w a k  e t  al. 

shape of the stationary probability distribution function ps(X) of the 
process x,, which, for a > a c r ,  becomes double peaked about a deter- 
ministically unpredictable steady state. Appearance of the new extrema of 
ps(X) results directly from the coupling of the system to an external noise 
and is commonly treated as an operational test for the occurrence of the 
noise-induced transition. (5) 

In a semigroup formulation of continuous Markov processes, (13) p , (x )  
is a weight function which can be interpreted as an invariant measure of 
the process at hand. Its existence implies, in particular, that the process 
itself is strongly recurrent (or positive ergodic), so that the probability 
mass cannot escape beyond the boundaries of a given state space. 

This concept is used throughout in subsequent sections, where we 
study the effect of state-dependent regular perturbations on the evolution 
of x r 

3. DETERMINATION OF A CHAOTIC REGIME IN THE 
MODEL SYSTEM: DETERMINISTIC ANALYSIS 

According to numerous studies, (14 16) dissipative nonlinear dynamical 
systems need not approach stationary or periodic states asymptotically. 
Instead, for appropriate values of their parameters, they tend toward 
strange attractors on which the motion is chaotic, i.e., both unpredictable 
over long times and extremely sensitive to initial conditions. 

Various analyses show that this seemingly random behavior is not the 
stochasticity produced by a large number of degrees of freedom, but results 
instead from strictly deterministic motion on a fractal. Its is then natural to 
ask by which observables this type of behavior may be most efficiently 
characterized. Usually, the presence of chaotic states in a system is deter- 
mined by the properties of the Fourier spectra of one of the dynamial 
variables (~7) of the system. These spectra present broadband noise, possibly 
superimposed on discrete peaks. However, such spectra provide practically 
no information as to the actual nature of the chaotic state to which they 
relate. 

An alternative method has been proposed by Procaccia, (18) who 
introduced a practical guide to the study of strange attractors based on the 
measurement of their characteristic fractal dimensions. Chaotic motion can 
be fully described by an infinite hierarchy of static and dynamic invariants 
which are observed as appropriate fractat dimensions of the attractor. First 
in this hierarchy is the familiar Hausdorff dimension D = do of the attrac- 
tor, which measures the exponential rate at which the "strange" structure 
appears. 
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Two other, more easily computed invariants are also useful in 
characterizing the chaotic state. These are the information dimension d~ 
(commonly denoted ~r) and the correlation exponent d2 (commonly 
denoted v), is, 19) defined as 

where 

(In Ci(e) } 
dl = lim (3.1) 

~ 0  ln(~) 

ln(C~(~)) 
d2 = lim (3.2) 

~ o  In(t) 

1 N 
(f(Ce(e))} = lim Z N ~  N .  f(Ci(e)) (3.3) 

z = l  

1 
c , ( e )  =~,  o ( e  - I z , -  zjl)  (3.4) 

and O is the Heaviside function. C(e)= (Ci(e)} is thus the correlation 
integral which counts how many pairs of points on the attractor are 
separated by a distance smaller than e. For small e, C(e) has been shown (19) 

to grow like a power 

c ( e )  ~ ~"~ (3.5) 

In the case of deterministic chaos in a system of F degrees of freedom, one 
finds d2 < F. (In general, the signal from random noise results in C(e)~ eF.) 
The information dimension dl governs the exponential rate at which one 
gains information by measuring the state of the system on the attractor 
with increasing resolution. (19) The interrelation among do, dl, and d2 has 
been established ~18) to be of the form 

d2 ~< dx ~< do (3.6) 

where equality holds when the covering of the attractor is uniform. 
In conclusion, both the correlation exponent d2 and the information 

dimension d~ provide useful measures of the local structure of a strange 
attractor. Characterizing the attractor with the exponents d2 and d~ rather 
than with the fractal dimension do also has a definite advantage for 
experimental applications, (2~ as the algorithms used to calculate d2 and 
d~ converge efficiently, even with a relatively small number of points {zi} in 
a time series. 

In practice, the analysis proposed by Procaccia is not carried out 
directly on the time series {zi} at hand, which is often only of a single 
variable, but instead on d-dimensional tuplets {z~, z/+k ..... zi+(a-l)k}, the 
procedure being repeated in larger and larger embedding dimensions until 
results independent of d are obtained. (18) 
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Our model dynamic system is defined by the evolution equation 

z,+ , =  q~(z,, 2, r) (3.7) 

z, = (x, ,  ~,, y , )  (3.8) 

with the flow q~ defined by (1.11), (1.20), and (1.21). Depending on the 
values of the parameters 2 and ~, this flow can shrink the volume in state 
space and thus dissipate its observable information. 

Up to now, we have reported on the influence of rapid stochastic per- 
turbations ~, on the evolution of the state variable x. From the stochastic 
analysis (Section 2) we know that the process {x(t)} defined by Eq. (2.3) is 
non-Markovian, due to the non-white external fluctuations imposed on e,. 
In the next section, we present a further treatment of the dynamics given by 
the three-dimensional flow ~b(x, c~, y). Its continuous version corresponds 
to a two-dimensional Markov process described by the pair {xi, ~,} which 
fulfills the set of stochastic differential equations (2.1) and (2.3). 

3.1. Stochast ic  Character  of External Perturbat ions 

When the friction constant 7 is fixed and ~ tends to zero, 2 approaches 
1, and e, becomes the conventional OU process (v) whose stationary 
probability density is 

p,(~) = (7/~2)~/2e -~2/"2 (3.9) 

0.4 

0.3 

o.z 

0 . 1  

0 

0.95 

-8 -4 0 4 8 

(] 

Fig. 1. A posteriori probability distribution for ~ for various values of A. Each curve 
represents 107 iterations of the map (1.20)-(1.21). 
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However, for en to converge to ~(t) with the dynamics predicted by 
Eq. (1.22) requires that e scale as c~(t)= r~/2c~L,/~j.(7) This is borne out by 
the following analysis. 

In Fig. 1, we present the a posteriori probability distribution of c~ as 
generated by the map (1.20)-(1.21) for four different values of 2. Each 
histogram p(~) represents an average over 1000 trajectories, each of 104 
points. As 2 ~ 1, the half-width of the distribution of {c~} can be seen to 
increase, and the distributions appear to the naked eye to be approximately 
Gaussian. 

In Table I, we present various statistical parameters of the distribution 
of e for various values of 2. Each set of statistics represents averages 
over 1000 trajectories, each of 1 0 4  points. For each value of 2 studied, 
the mean of the distribution is roughly zero, but the standard error 
0"c~= ((O~--(~))2)1/2 grows with increasing 2. In fact, for large 2, 
a ~ l / ( - l n 2 )  1/2, consistent with the scaling requirement imposed by 
(1.22). 

Also given in TableI  is the standard error of the mean of the 
individual trajectories a~, From the central limit theorem, we know that a~ 
should be roughly a~/N~ 2, where NT is the number of points in an 
individual trajectory, provided that each trajectory is sufficiently long so as 
to sample the entire space. Evidently, increasingly long trajectories must be 

Table I. The Mean ( a ) ,  Standard Error cr a, Dimensionless Measures of the 
Skewness and Kurtosis Y3 and Y4, and Variance of the 

Mean ~ ,  for the a Process (1 .20 ) - (1 .21 )  for Various Values of ~a 

2 ( ~ )  a~ 73 ~4 a ,  

0.1 6.22 x 10 -5  0.708 2.14 x 10 2 1.54 7.73 x 10 -3  

0.2 7.01 x 10 s 0.718 8.19 x 10 -2  1.63 8.70 x 10 _3 

0.3 8.03 x 10 5 0.739 0.172 1.75 9.94 x 10 -3  

0.4 - 1 . 1 2  x 10 - 4  0.768 0.283 1.96 1 . 1 7 x  10 -2  

0.5 3.60 • 10 -4  0.812 0.400 2.23 1.36 x 10 - 2  

0.6 1.20 x 1 0 - 4  0.878 0.509 2.55 1.72 x 10 -2  

0.7 - 2 . 3 8  x 10 - 4  0.983 0.591 2.88 2.36 x 1 0 - 2  

0.8 1.04 x 10 -5  1.17 0.615 3.14 3.62 x 10 -2  

0.9 6.24 x 10 -5  1.60 0.535 3.25 7.31 x 10 -2  

0.99 1.21 x 10 2 4.96 0.194 3.07 0.725 

0.999 0.224 15.7 7.19 x 10 -2  3.03 6.97 

0 .9999 0.807 39.7 8.11 x 10 -3  3.01 31.6 

a F o r  a G a u s s i a n  d i s t r ibu t ion ,  73 = 0 a n d  74 = 3. N o t e  the  d r a m a t i c  increase  in b o t h  a~ a n d  a~, 

as welI as ajau, with  i nc reas ing  2. These  s ta t is t ics  r ep resen t  ave rages  over  103 t ra jec tor ies ,  
e ach  o f  104 po in t s .  
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taken for this condition to be met. In fact, even increasing the length of the 
individual trajectories by two orders of magnitude was observed to have 
little effect on the standard error of the mean. Moreover, the study of 
longer trajectories provided striking examples of the gambler's-ruin 
scenario, in that a slight preponderance of trajectories to one side of the 
origin or the other gave rise to large values of both skewness and kurtosis 
for the entire distribution. 

This implies that {c~} approaches its diffusion limit very slowly. Thus, 
in evaluating Eq. (1.11), we have avoided possible divergences introduced 
by the perturbations of c~ by renormalizing the values of %+1 with the 
standard error o~ and mean (~)  calculated directly from the mapping 
(1.20)-(1.21): 

~ ,+1~  (3.10) 
0"~ 

By making use of Eq. (3.9) as an invariant measure for the diffusion 
process {c~(t)}, one can easily follow the definition (3.4) to calculate the 
one-dimensional correlation integral 

da e 7(g2 + X2)/0"2 dx 
- - g  

0 

- 4  

L.--..d 

- 8  

d _  
(, + oo 

= j 
7Z O  " 2  - -  oo  

27 
= , , t i m  e ~ O  f f  

- 1 2  

a-Process  

- 6  - 4  - 2  0 2 

ln( ) 

(3.11) 

Fig. 2. Correlation integrals of the c~ process (1.20)-(1.21) for different embedding dimen- 
sions d; 2 = 0.9. 
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Thus, according to (3.2), the correlation exponent should in this limit 
approach 1. Figure 2 presents the results of numerically calculated Cd(g) 
for the system (1.21) with 2 =0.9 for embedding dimensions d =  1, 2,..., 10. 
All curves saturate at large values of e due to the finite size of the attractor 
and at small values of e due to the finite size of the data set. Cl(e)~e 
because the 7 process is space filling in d = 1. In higher embedding dimen- 
sions d >  1, regions wherein In Ca(e) is of nearly constant slope d z < d  
appear. However, these regions are not strongly persistent to large 
embedding dimensions, nor are they present over a wide range of ~ for 
smaller values of 2. This suggests the existence of an underlying structure, 
but one which cannot be a strange attractor, particularly as the slope of the 
"scaling regions" of In Cd(~) remains weakly dependent on d. 

Note that 0-2/27 is the variance of the process--the time-correlation 
function for the OU process is g ( t -  s ) =  (a2/27) e x p ( - ? I t -  s] ). In the joint 
limit r .... --* 0, a -*  oo, taken such that 0-z/~2 =const  = #2, the frequency 
spectrum of the OU process converges to  #2/2/z: 

1 f+oo --iv'c- 0.2 #2 
lim S(v)= lim ~ 3  e c(z) dr=._--y77.2=-;--- (3.12) 

oo zTzy zrc 

i.e., the spectrum becomes completely flat. Its correlation function is then 
given in this limit by a generalized function 

c(z)=#26(~) (3.13) 

and the OU process converges to Gaussian white noise. 

W h i t e  N o i s e  
0 

- 4  

- 1 2  
- 4  - 2  0 

Fig. 3. Correlation integrals for numerically generated, uniformly distributed random 
numbers (an approximation to white noise). 
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This limit can also be achieved 15'=) by introducing an appropriate 
scaling of the OU process [see (2.1)], which in turn leads to a one-dimen- 
sional correlation integral 

e 2 
Cl(g) e ~-0 N~  0-2 ( 3 . 1 4 )  

This would seem to suggest a close similarity between the correlation 
integrals C(e) for both white noise and an OU process. 

However, let us point out a notable difference in the behavior of Ca(e) 

for the process (1.21) in comparison to a similarly calculated correlation 
function of a numerically generated random white noise (Fig. 3). In this 
case, no region of nearly constant slope (independent of d) appears, and no 
limiting embedding dimension is reached, so that C a ( e ) ~  e a as ~ ~ 0. 

In conclusion, we see that although "n approaches a diffusionlike 
stochastic process, the transition is not very sharp. Trajectories of c~ need 
relatively long runs to uncorrelate and to fill the entire state space. 

3.2. Critical Effects Induced by External Perturbations: 
Evidence of Chaos 

Assuming an underlying dynamics of the external parameter c~ given 
by Eqs. (1.20)-(1.21), we have numerically calculated histograms of the 
events xn whose evolution is governed by Eq. (1.11). For sufficiently tong 
iterates, the histograms "saturate" to an invariant shape (Figure 4) which 

2 e_.~= 0 

0.2 

p ( X )  

1 

/ 

/ 0 .8 
, , , . . . . . . . . . . . . . . . . .  

0 0.5  

x 
Fig. 4. A posteriori probability distribution for x for various values of z and 2 = 0.9. Each 
curve represents 500,000 iterations of the map (1.11) with the dynamics of ct modeled by 
(1.20)-(1.21). 
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represents a stationary probability distribution for the process at hand. The 
situation displayed is strongly remininscent of the noise-induced transitions 
discussed in Section 2. 

Occupancy of the stationary state x~= 1/2 changes drastically with 
changing values of T (we assume that 7 =  1/3 ..... the inverse of the 
correlation time of the process e,, remains constant). When the time elap- 
sed between subsequent "kicks" in e is long, the stationary probability den- 
sity is unimodal with a nearly symmetric Gaussian distribution around 
xs = 1/2. By shortening 3, we arrive at the threshold value r*, (e -~*~ - 0.6 
for 2=0.9) ,  at which point ps(x) flattens and eventually splits (z <~*),  
giving rise to new stationary states xs, > 0 and xs2 > 1. Further decreasing 
of r leads to the damping of the bottleneck between the maxima, which 
themselves shift to limiting values of X~l = 0 and x~2 = 1, which points also 
become in the limit the boundaries of the support of x,. In effect, for suf- 
ficiently small values of z, the transition from one peak to the other 
becomes a rare event. This suggests that the increasing variability of c~ 
favors stabilization of the process x, near one of the boundaries x = 0 or 
x ~ l .  

A similar conclusion can be drawn by studying diagrams of x ,  versus 
en (Figs. 5-8 and 9-12). For  sufficiently large values of 3, the most 
frequently visited parts of the state space (xn, an) correspond to a 

X 

0 

l I ~ i /, 

,r 
I r 

i 

I I I I I I 

- 4  0 4 

Fig. 5. 

O( 

A diagram o f x  versus ~; 2=0 .9  and e 3=0.1. 

822/54/1-2-36 
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X 

0 

- 4  
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0 4 

A d i a g r a m  of  x versus  ~; ~, = 0.9 a n d  e - ;  = 0.6. 

X 

0 

- 4  

i I [ I I "l  

[ [ [ I I I 

0 4 
O( 

Fig. 7. A d i a g r a m  of  x versus  ~; 2 = 0.9 a n d  e - *  = 0.9. 
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Fig. 8. A diagram of x versus e; )~ = 0.9 and e - ~ =  0.99. 
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I I ] I i I 

- 4  0 4 
O( 

Fig. 9. A diagram of x versus e; ). = 0.5 and e ~ =  0.1. 
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Fig. 13. Correlation integrals of the z process [ ( 1.11 ), (1.20)-( 1.21 ) ] for different embedding 

dimensions d; 2 =0.9  and e - Z =  0.7. 
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Table  II. The Procacc ia  Cor re la t ion  Exponent  d 2 fo r  the  z Process ~ 

2 e ~=0.1 =0.3 =0.5  =0.7 =0.9 

0.1 1.46 1.64 1.84 2.03 2.11 
0.3 1.56 1.69 1.87 2.07 2.13 
0.5 1.71 1.80 1.95 2.13 2.22 
0.7 1.86 1.93 2.06 2.22 2.30 
0.9 1.70 1.88 2.05 2.24 2.30 

a These values represent averages over least-squares fits to In Ca(e) for In ~E ( - 1 0 ,  - 8 )  for 
d = 3 , 6  ..... 15. 

neighborhood of the diagonal x , = c ~ , .  Rapidly fluctuating c~ ( z ~ 0 )  
generates a hysteresis of  states in the space x x c~ whose width broadens for 
smaller values of r (Figs. 6-8). 

As ~ decreases, the region of atraction changes drastically, until in the 
limit it consists (Fig. 8) of two branches of favored x values in the vicinity 
of the boundaries x = 0 and x = 1. The smaller ~ becomes, the rarer is the 
switching of the system from one of the branches to the other. For even 
smaller values of  z (not shown),  the two branches become sharp, horizon- 
tal lines whose projections overlap in the center of the figure, there being 
almost no events with x values in the open interval (0, 1). 

The significance of the correlation time of external perturbations can 
be visualized by the use of analogous diagrams (Figs. 9-12)  for different 
values of 2. Figures 9-12 display variability in the region of attraction for 
the same series of r values as in the cases described above, from which the 
only difference is that now )~ = 0.5, which expresses a different choice of 
correlation time T .. . .  = 1/7. 

Table  III. The I n f o r m a t i o n  D imens ion  dl  fo r  the  z Process a 

2 e - ~ = 0 . 1  =0.3  =0.5 =0.7  =0.9  

0.1 1.51 1.69 1.89 2.08 2.10 
0.3 1.60 1.73 1.91 2.10 2.18 
0.5 1.74 1.84 1.98 2.17 2.25 
0.7 1.91 1.99 2.11 2.28 2.38 
0.9 1.87 2.04 2.21 2.39 2.46 

a These values represent averages over least-squares fits to ( ln  Ca(e)) for In ~ ~ ( -  10, --8)  for 
d =  3, 6,..., 15. 
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Shorter values of rcorr imply a more complex evolution of x (see, e.g., 
Fig. 7, 1/7 = 1; and Fig. 11, 1/7 ~-0.15) with a visibly deterministic charac- 
ter: The orbit of x ,  seems to fall onto a low-dimensional attractor. 

This conclusion is confirmed by calculations of the correlation integral 
for the process zn= (xn, o~,, y,). A plot of in Ca(e) versus in e (Fig. 13) 
exhibits the scaling region d2=const ,  which persists even in higher 
embedding dimensions. As the process z n is itself three dimensional, we 
have studied embedding dimensions d =  3, 6,..., 15. All curves saturate at 
large values of e due to the finite size of the attractor and at small values of 
e due to the finite size of the data set. 

We have carried out the Procaccia analysis for a number of values of 2 
and z for both the correlation exponent d 2 and the information dimension 
dl. Our results are summarized in Tables II and III. 

It is interesting to note that the phenomenon disappears, however, 
when a similar analysis is performed on the projection of the process zn on 
the state space of x alone. The results obtained are similar to those seen for 
the c~ process (Fig. 2). Although we detect to particular underlying 
"strange" structure of the underlying attractor, recurrence plots (x, ,  xn + ~) 
(Figs. 14-16) clearly indicate the presence of strong "time correlations" of 
x, .  These illustrations also depict the continuous passage of the process xt 
from deterministic to diffusive behavior as controlled by a sequence of 
decreasing values of z/z .... �9 

I 
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R e c u r r e n c e  p lo t  o f  t h e  x p r o c e s s ;  e ~ =  0.7 a n d  2 = 0.1, o r  z = 0 .36 a n d  z/r . . . .  = 2.3. 
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Fig. 16. Recurrence plot  of the x process; e - ~ =  0.7 and  2 = 0.9, or  ~ = 0.36 and z/z  . . . .  = 0.11. 
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Let us also note that Markovian character of a given dynamics does 
not exclude its deterministic nature. In fact, the Markovian property is 
generic to deterministic processes. 123) Any isolated physical system can be 
described as a Markov process whose components are all the microscopic 
variables of the system. Its motion in phase space would then be given by a 
fully deterministic, and therefore Markovian, flow. 

This is the case of the dynamic system analyzed in this paper and 
defined by the vector zn [see (3.7) and (3.8)]. Its emerging chaotic behavior 
thus has a purely "deterministic" character. On the other hand, a projec- 
tion of z, onto a lower-dimensional state space produces a non-Markovian 
process whose properties, even in the case of regularly disturbed external 
parameters, can lead to a stochastic evolution. 

4. C O N C L U S I O N S  

We have described a dynamical system whose time evolution depends 
on externally perturbed model parameters. It was observed that inclusion 
of state-dependent perturbations can induce a variety of phenomena which 
can have either a chaotic or stochastic nature. 

After reviewing the well-known properties of the stochastic continuous 
version of the model (Section 2), we analyzed its deterministic analog (Sec- 
tion 3). To distinguish between perturbation-induced chaotic and stochastic 
behaviors, we used the concept of the correlation exponent proposed by' 
Grassberger and Procaccia. (18) 

The possibility of the existence of fractal attractors and/or diffusive 
motion has been pointed out by studying the sensitivity of a given 
dynamics to the strength, frequency, and time correlations of external 
perturbations. 

It has been shown that in the limit case, when the dynamics of the 
perturbations converge to a stationary Gaussian diffusion process, the 
long-time behavior of the model system coincides with the predictions 
afforded by a stochastic analysis. 

In particular, the implications of rapidly varyirig perturbations have 
been expounded by evidence of effects similar to noise-induced transitions. 
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